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. . .

SYMMETRICAL CYLINDERS AT ZERO ANGLE” OF ATTACK
.,

AND

By W.

For the tunnel

WITH NO CIRCULATION* ‘

Hantzsche and H..”Wendt

corrections of compressible flows
those profileq are of interest for whi~h at least the
second approximation of the Janzen-Rayleigh method can be

appl-ied ‘n cl%’e%#f”rm”
One such case iS presented by

certain ellips.o-i-al symmetrical cylinders located in the
center of a tunnel with fixed walls and whose maximum ve-
locity, incompressible, is twice the velocity of flow.
In ..thenumerical sol~~tion the maximum veloc’it”yat the
profile and thetun.nel wall aii well’ as the entry of sonic
velo.ci.ty is co.mpute.d. .: .... ....‘

.. .
The, velocit.,y distr,ibut.io~ ~ast. .t”hecontour and in’

the minimum cross section ,at various Mach numbers is’ il-
lustrated on a worked out-example.

INTRODUCTION

The method of Janzen (reference 1) and Rayleigh (ref-
erence 2) for the step-by-step calculation of subsonic
compressible potential flow from the incompressi.b.le flow
was in original form applied only to flow past ‘t$t~Circu-
lar profile and to the sphere in free air. ?oggi m?dified
the solution of the boundary value problem for two-
dimens.ional flows so as to make the method equally appli-
cable to ‘other simple profiles (reference 3). The math-
ematical task is largely confined to the determination of
the velocity or pressure distribution on t~e profile.
l?or the solution of the second step (development of the
potential to the ~uadratic term of the Mach number), Imai

*l!Die compressible Potent.ialst.r.5mung um eine. ~char ‘on
“nichtangestellte”n symmetri.schen ‘Zyzi,nderm i.m Kanal.lt

“+~-uftf-tiH”rtfOr~tihUp&,,.V,OIO ~~tpoj 9,. Sept,. ?0, 1941,
.“.. ~P, 311w316:.- -.. .. .,.:’.

., .,,. .. !

. . ,:.. ‘-. . .. .
,.
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and Aihari (reference 4) ha’~e ~ndicated a method by intro-
ducing the variables z anij z instead of x and y
previously employed by Busernann (reference 5) in his
treatment of the incompressible flow, which enables the
obtainment of the potential ’in the entire field even for
more complicated cases. By way of application Imai and
Aihari calculated the flow past an ellipse in free air.
In %?%~l$%?#%W’&&Kaplanls calculation patterned after Poggi
(reference 6) for the ellipse at zero angle of attack and
with no circulation, which requires the series, the solu-
tion can be given in closed form.

For flows in the tunnel only the second approximation
about an almost circular contour by E. Lamla (reference 7)
is available. He used the method of Janzen and Rayleigh,
wfth the incompressible flow produc’ed by superposition of
a parallel flow with a doublet and its reflections at the
tunnel walls as first approximation.

The present report deals with the second step for
the incompressible flow about a group of ellipsoidal cyl-
inders in the tunnel. The profile curves are denoted by
circles after conformal transformation of the strip
bounded by two parallels, mapped on a plane sectionalized
along a semistraight line. In incompressible flow”the

cylinders have for each thickness ratio
(

thickness
chord )

double the flow velocity as maximum velocity. The dif-
ferential equation is integrated according to Imai and
Aihari .

I. DIFFERENTIAL EQUATION OF THE FLOW .

The potential @ (~, Y) of a stationary, nOnrota-
tional two-dimensional compressible flow satisfies the
differential equation of the second order:

“x.(1-5)- ’@xY.s++iY(’-s)=o” ‘~’”)
where u = @x, v =-@y in’di~”ate”,’resp”ecjtivjeiy,”the gom-..
ponents of the, velocit”y’ a’long”th.e .x- and y-axis of. a
rectangular system’ of. coo’rdin.a-tes x,y the sonicand a.
velocity, This iS a function of U,V; with am as sonic

velocity and U as the flow velocity at infinity we get
‘“u
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2 .=: .az. : . - L.+u2..:~ +:~} _ .U=”y. ‘ -..a aJ-
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Equation (1) can he’ w’iitt~,n in” t’he form
... ,-,,...’

~:
i}
;...~

~~ + @yy = $ [@xx@x’, +- 2@xQy@xy + @yy@y21‘# @ “(3)
. .

,Envisaging the potential. developed along the Mach number

“M=~
am.

equation (3) affords differential ea.uations of the f,or.m

A@. = O (4)

21
1 h ) (@o)x:+2(@o)x(@o)y(@o)xy+(oo)yy (Qo)y j (5)A@l = —
U2 ~ 0 xx

~~nation of
is the potential in incompressible flow; the deter-

o~ represents the second step of the ‘Janzen-

Rayleigh method of approximation, As potential of an in-
compressible “flow @o” is the real part of an analytical

function

f(z) is

With

..,

of z
f(Z) + ‘(z), if

=x+iys @o= R&f(~)=
2.,

the-conjugate complex v“al’ueof- f.(z).

-.%= ii%+%]. ~ “ .‘~o)x ~ Re”~,., -.,

[ 1(@o)y-=’”-GE=~.-’~”+~ ‘.” “.
[
“’-
1

.
(@o)x+=’w$=+.g.+~..
(;O)XY.= iif’ “ i“”’

[“

da f 1;“”~f ‘
‘~~=~’-,dzz —. ~zz ““

.

[“ 1(@o)yy=-QQ~=-~~+~.”i-
ll ‘ —
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. .
the “right-hand side of ea-uation (5)’-Can be formed to read:

.-..

“The equationfor @l assumes the form

Introducing the complex varia%les z = x + iy and

~= x - iy in place of x and 7 it can be transformed
aaa b—= —

(
a a

)‘ith ax az+~and by 1 z-~ ‘o
—=”

the integral of which can be indicated

f( )df s --l
G- dz + F (Z) + G (Z)

J
(7) .

The analytical functions F (z) and G (~) are arbitrary,
pending determination by the boundary conditions..,

The formal use of z and ~ as independent vari-
ables still requires justification.

The conjugate complex value m of the analytical
function f(z) is ,,nolonger an analytical function of z,
while ~ is obviously analytical in E. To express
this we write ,

—._
.,. f(z) = f(F) (8)

Since z = a;, t“he derivatives of ~ with respect to
?r become

.
,... .

,.;. ,...,.
.. . ‘“’
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(9)

whence ea.uation (6) can be written

Permitting the independent variables x and y “to
assume temporarily any complex values xl + ixa and

Y1 + iyzt then f(z), ~(~) and @ ostensibly become

analytical functions of the two complex variables x and
Y. Then the substitution of the independent varia%les

and Za = x - iy

for x and y changes equation (10) to

so for @I we get

.,, Jr:::’)x+df(zl)
dz2 + 2F (Zl) + 2G(z2)

1
(11)

with F“(zl) and G (22) indicating the analytical

functions of ZI and z’s respect..ively. Again limited

to real x an”d y affords Z1 = z and Z2 = %. Taking

moreover.,.:thereal part of equation (11) so as to secure a
real solution of e“quation (6); the ‘final expression
(equation (7)) with due account of equations .(8) and (9)
reads :

@x=~%_
Pm

J( )
~

4U a [ dz dZ
a dz + F (z) + G (%)

}

II .—
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If the potential is” referred to the complex coordi-
nates “~ and ~ of a ~-plane tied to the xy-plane ~Y
the conformal transformation \ = ~(z), then @l assumes

the form

Conformal transformation is usually resorted to for
reasons of easier compliance with the boundary condition
that the derivation of o~ normal to the profile contour

should disappear.

!Ilhedifferential equation for the second term of the
stream function in the development along the Mach num%er
can he transformed in analogous manner,

The stream function V(x,y) of a two-dimensional
stationary nonrotational compressible flow meets the dif-
ferential equation

“xxQ-5) -2”xy3+”yy$-5)=o ’13)
with up = Pm +y and vp = - Pm Wx the components of

the stream density.

With ~ = ~o+~lM2+o..(~o stream function of

incompressible flow) equation (13) affords for VI the

differential equation

L!Q.E (Vo)x(ifo)y (Wo):
WI = (Wo)xx ~a - ‘ (I.fo)Xy U2 + bo)yy 7J’

wh”ence the introduction of z = x + iy and Y = x - iy,

if *O =~f(z), gives

(V,)z= = - *&l {%% (%$-?2}
or
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=“=

“’tJ/I:-- _&& {WJww W@(z’ +‘+’:](;4’
..-

,.
A comparison of equat-lon (7) and equaltion (14)

shows that the complex functions occurring at @l and *:X

behind the sign & and Jm differ only in the terms ‘
added %y the boundary conditions.

II. INCOMPRESSIBLE FLOW IN THE TUNNXL

L

:2
4,
.,.

,’
1

r

We proceed from an arbitrary symmetrical profile” at
zero angle-of attack placed in the center of a channel
with fixed walls. The flow of the entire plane obtained
by reflection at the tunnel walls is referred to a system
of rectangular cartesian coordinates x, y, the x-axis
of which is located at tunnel center. The tunnel height
can be chosen equal to 21? without limitation of gener-
ality. If z = x + iy again indicates the complex co-
ordinate in the xy-plane, the complex potential of the
flow is an analytical function f(z), which at infinity
acts as Uz (u = flow velocity) and otherwise has singu-
larities only on the inside of the profile; f(z) is a
simple periodic function with the period 2ni. Then the
transformation ~1 =ez maps the z-plane into the com-
plex L’ = ~ ~ + i~’-plane and each strip parallel to the
x-axis of”width 2TT covers the entire plane. Consider-
ing the strip - m.~y~~ in particular, we find the
tunnel walls y = - m and.y=m changing to the twice
traVersed negative Et-axis. The line of ’symmetry of the
tunnel becomes the positive ljt-axis, the symmetrical
profile changes to one symmetrical to the
infinitely remote point ““ofthe

.~‘-axis. The
z-plane is reflected in

the zero point and infinitely”.remote point of the ~r-plane.
l?rom the behavior o:?~f(”iz)’..fGr z = m it fo”llows that in
the vicinity of .~~ = O a’nd ~’ = ~, f(~r) acts, as..; .-
U in g,1.... .Asid.e.from these two points” the fun.ctio.nhas no -

singular.points outsi’de’of’ the profiles; f(gt) ib there- -
fore the potential o.fthe flow “in the’ ~~-plane”produce~
by “a-source witli’the-yield. 21TU. .in.th~ zer’c”point. The
profile and the ~ ~-axis are streamlines. ,..

Concentrating on”the group of profile Contours.in .“’
the tunnel which the transformation tt= ez maps into
circles, the com$l.ex potential f(~~) is readily. . .. ~~

..



. . . . .. . ,.

8 NA’CA Technical Memorandum No. 1030

in~icated by reflection. on” the circ,le’* “.

(15)

if b is the center .abs.cissa of the c“ircle of rad”ius a

and c = ‘“
%

The family of pro-file ‘curves in the t:unnel is shown
in figure 1 a.

These profile curve’s are symmetrical with the median
line of the tunnel and at right angle to it,”as is readily
seen from figure lb co.nformalle to the ,chord-tangent
theorem. The highest point of a profile curve in the
C?-plane is given by the contact point of the tangent
placed on the circle from the origin of the coordinates.
Obviously the same profile curve is obtained for values
of a“ and b with constant ratio $ up to a parallel

displacement along the tunnel axis. Thus keeping the
center distance. b fixed while varying the radius a
fromzero.to 3,:.af.fords the whole group; the position
shown in figure la then is” obtained ‘by parallel shifting
of the individual culrves. The relationship of ’displace-
ment ratio, to thickness rati,o o,f the p,rofile curves is’
indicated in figure 2. “The maximum “velocity follows
from .,’

,.
,.

.’ ,..,
.-

for “the contact point of the, tangents ‘ , ‘“ . ,.
,,

*TO find t-he flow r-epresent&d by f( ~’) i,fthe profile
in the ~’-plane is not yet,a circle, the outer zone of
the profile would have to be mapped” onto the. outer z,one
of a circle of a complex. .zl-pl&e., Of the corifarmal
transformation it is de”manded that it be symmetrical to
the C?-axis, that is,. the ~ l-axis, becomes .,the xr-axis
and the infinitely remote point of the ~ ~-plane is
mapped in that 9f the z t-plane . Then .ilieflow in the
zt~plane

—.—,,...,,-

again”’becomes the flow of a sotirce ‘about a circle.

,,.,,,.,.,,,,,,,,,,,, , ,,,.,. , ,,(,,,.,,,,,..,,,,, , ,-.- mm,, ,,,
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with allowance for equation (15) at
.

df ..
G=” U-l V’

= 2U

hence the maximum velocity is always twice the flow ve-
locity, as is readily understood for the two extreme
cases a+o (spher~in free air) and a+% (very long
plate of thickness

2
in tunnel of height h).

III. COMPRESSIBLE FLOW IN THE TUNNEL

In the following the circular plane is referred to

a coordinate system ~= ~f -b through the center Of
the circle.

Then the complex potential (equation (15)) has the
form

whence the incompressible velocity potential

The additional
(12)

+
.’

i

+

(16)

potential (OX is according to equation

,.

~+ (b- c)’in (~ + b)
..,.,.. .~.+1--- -

(b - c)d in
g“.+ c “‘

(b - c) d in (~ + c) (b - c)2 ‘,

“~+c - (g+c)(~+ c).

}
T1 (~) + G. (t) (18)
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2%2 ~~ -.. ,.,
with d= -l-—

~z

Because o“f the con”foifial transformation of the
z-plane into the ~-plane (~ = r ei~) the boundary con-
ditions .i.nthe, ~-plane ,c.anbe easily indicated.

., .“,
1. ..The disappearance of tlie normal component of the

velocity on the profile of the xy-plane stipulates that
the derivation of @l normal to’ the circle r = a“ in

the ~-plane be zero:

-“ml .:* ,’()F= r.a

2. The tunnel “walls must be streamlines, hence the

&P ~
derivation —

bq
on their corresponding part of the neg-

ative ~-axis must disappear:

V=o
,.. .

3. The additional velocity at infinity must %ecome
zero in the plane of the tunnel”. c
t

In :-point = - % and
=m the expressions

and
. .

must therefore disappear.

4. As the flow is to be withou”t circulation, the

a~l
,.’:derivative for

~ l=~a must become zero:
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The functions FI (~) is given elsewhere. The ex- J.:c,&;::A5:
istent integrals are gnd-e-%er= ;

and GI (~) should be so de- ~,i,wti~-integrals, since a f30n- (~
fined that .03 (~) complies stant amounts to nothing at
with the conditions 1, 2, 3, the potential. The integra-
and 4, and that the veloai*Y tiona are easily carried out.
field in the xy-plane has no They were omitted here because
singularities outside of the it makes the expressions more
profile at finlty complicated and is moreoyer

It then affords for
unnecessary for the predic-

@I tion of the velocity field.

S
in -~:+ b

(c )dr+ln(b-%)f+] i+a’(a’+c~)z

(—1+392$ )[ln(~+b)–ln~+ln (~+c)]}. . . . . . . . . . . . . . . m

(19)
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So far the Boundary aondi- the individual terms of equa-

tions 1 have been met without tion (18). The two underscored
taking the others into account. terms in equation (18) together
This was carried out separately are purely imaginary, hence may
for each term on the right-hand be omitted. These were In-”
side of equation (18). One termclwded in equation (18) only
on the right-hand side has the be~auce of the para’ilel to the
form U (h(t) k(~)) and fur- stream function.
nis’hes as constituent to the !@he second boundary condi-

M!# for i)o,
radial derivative .tion

()
= O ie ~atiaf$ed

w g<-b
r=a:

ll=o

&[*. k(z)eiT+$+h(C)e–i~]r_a by all nonlogarithmic terms, be-
cause the expression below the

This term is now a real reign & derivated with re-
nart of a function of 6iP, say, spect to CP becemes purely im--.

Otherwise it may” hap-
~ (g(eip)). 3’orming both ex- aginary.

presslons
pen, for instance, at term

‘“[~~dt} and ‘UIJ$LUI ~~\l~Jr~~jlr~lJ1l~’ ~~at

bring these to disappearance
they patently have on circle

the radial derivative:
the two lines of equation (19)

r=a below boundary conditions 2
-~ g (eiv) preciselY required were necessary. The expres-

for the compensation.
sions are so chosen that condi-
tions 1 are always complied

The choice of either func-
with.

tion is, for the time being,
a decision is usually ar- Lastly, the solution ofopen;

rived at because only one of the
the homogeneous equation in the

two functions satisfies the
last line has been given a sui-

boundary conditions 2 at the
table factor. so that conditions

It therefore seemed 3 are also fulfilled; the con-
same time.
advisable to treat the twc addi-

ditions 4 are of themselves ful-
filled.

tive components of g (ei~) dif-
ferently on many terms. The equations for the

stream function corresponding
BY the present method of tc equations (18) and (19) are

compliance with conditions 1
both the real and imaginary Parts-&K=-~Jm

{“+++–bl”$+~

of function g (Oiq) at the cir-
—

cle are compensated, which is + bd’n;~+~+ ;;;:”-

not at all necessary.
~l~;~+(b~~c~d lnc

——F.

The first eight lines of +(b–c)in(C+b) (b–c);$c(C+c)

equation (19) indicate the pro- r+T-”–—
portion for the additive func-
tions YI (~) and GI (~) for – (c$“;:; “)+Fa (~)+G*(c)},
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with d = - 1 -.2 E as before. ia Identical with the follow-
aa ing:

The underlined terms ai?e’-real, ‘
- hence-may beomit.ted. —...

$Y1=+’J{%-$1 ~~~ bd[w+f”i-+f:%’:]”
IV. ~M3RICAL EVALUATION

{ - ‘--
!._ )}In f+b

b ln (~+.?)
c

The components of the ve-
C

{
( )}

locity in the tunnel are:
in ‘::+c

(
_bd .!%&#t.:_.--c_T.- ~=; $+

. “%)= 4’+5--:)+%%

}

a
( )

—2b(~—c) =---1 ------- — g M3% = –W(l+~–$!+TaV%=

{}

)
Mea q

{(C+4 C&(c+ c) ay u+
—.

in-$ . ..(20).

—(ti-c)d * ——___
C+c only ~ and ~ at the profile

I

.
( )}

In -fz-+b edge are being %ndicatad. To
- (b — C) ‘fjj+;b) —

?+C calculate the differential quo-

{
in (c+ c) ( )}

h $+c Z)Ql

(b–c)d ------–Tc tients ~ and ~ we pro-
C+ c

{

h (Ci- b)
teed to the polar coordinates

—b(l—d) —T-–+~xhb r,cp of the circular plane and
note that at the nrofile

ln(f-+b) , ln~jc~!.J}]. (%).=.=(*),=;(*).=.=
c-$+C ‘0’ (~)r=.”nd(%),=.

since ~e~~.+b

The boundary condition fOr =#+~v,wg tlavg
@ = O at, the circle r=a was

(–J
ap’ b

()

av
=--z sintp; — =I+:cosq.

complied with by deducting from hX,r=~. a.yr==

each term the expression ob-
tained if (~)p~qordin~to(~’]iIaSt,.,~,~,

L or ~ is replaced —1
()

I .aq—.. — _

by e or e, as reflected in
a U av .=~

r{ “1 !k[bd+;-+br:;:b).—_ –bd$&

the first seven lines of the
4

formula’ for Wi, the last two –(b–c)d U:,$c)–(b:c) ~t+2;~;+T

~~being the,rema.ining boundary
+/I+3”&2$)~+.

conditions in’order. If the “
procedure of,the potential func-

{

-i 2ihbe_i;p _2iei’fln(C+b)b (1 —d) ~~~$f) + a~
tion had been followed, it would P 1
have largely afforded the same “(o_.b)(l._d)— ‘2iei9

{
2ieiwln(~+b)

terms as these, except with a dif- (C+O(C+4------ (g+C)2----

ferent prefix in some parts. ( )}]
2ieipln b—$

The first term, for instance, + (4+C)2 – .==”
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the maximum velocity at the profile in the tunnel is:

‘max—= 2 + $ ~z?
u

(21)

with

Figure 3 shows the paraneter @ plotted against the
displacement ratio. l?or the case of the circle in free

da+O, —= O,’ we get 13 = ~ as it already must beair
h 6’

the case according to Rayleights own calculated second
approximation at the circle. For the other extreme

a+b, & = 0.5 (very long plate of thickness ~ in tun-
h

nel of height h) we get ~ = 3. In this case the veloc-
ity between profile and wall is ~onstant. It follows
from the requirement that the stream density is twice as
great as at infinity:

or

The expansion

gives

up=2up (M

?&=Z&
u P

Pm according to the Mach number uM = —
T %

u_= 2+ 3M2 + . , .
u

hence B = 3.

The second curve plotted in figure 3 indicates the
value of P in the narrowest area on the tunnel wall,
when putting:
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,.

where ‘ik is the veloci.t~ at’‘the wall in incorn~reskible
., .....

flow* In figure 4 the “’in-tryof ”so-nic-~elocity on the pro-
file (critical Mach-number of flow) is.plotted,against the
displacement ratio.’ !The.:critichl Mach number’is obtained

,.
‘max =from equation (21) by put~ing ~ $ (a* = critical

velocity).”” ‘ ““ ,, ,.

Figures 5 and 6 show the velocity distributions on
the profile and ,in the ,narrowest part of the t,unnel plot-
ted against the Mach num%er of the

%
low. Thep~ofile 3

of figure 1 a with thickness ratio – = 0,761 and dis-
t

dplacement ratio ~ = 0.356, was chosen as cylinder.

Translation by J. Va,nier,
National Advisory Committee
for Aeronautics

. .
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